If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14^2+b^2=23^2
We move all terms to the left:
14^2+b^2-(23^2)=0
We add all the numbers together, and all the variables
b^2-333=0
a = 1; b = 0; c = -333;
Δ = b2-4ac
Δ = 02-4·1·(-333)
Δ = 1332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1332}=\sqrt{36*37}=\sqrt{36}*\sqrt{37}=6\sqrt{37}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{37}}{2*1}=\frac{0-6\sqrt{37}}{2} =-\frac{6\sqrt{37}}{2} =-3\sqrt{37} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{37}}{2*1}=\frac{0+6\sqrt{37}}{2} =\frac{6\sqrt{37}}{2} =3\sqrt{37} $
| x/10=-101 | | 5^(x-3)=2 | | -6+10k=94 | | 16 = j3+ 14 | | 0-5x=24 | | 3x-2x+5=2(x+24) | | -4+4k=36 | | 2x^+3×+1=20 | | 6−6x=−24 | | m–55/3= 9 | | 3x-2(2x-5)=2(x=3)-8 | | m–553= 9 | | m-55/3=9 | | 3/4(20y−8)+5=1/2y+1/4(20y+8) | | 23^2+b^2=14^2 | | -8h=24 | | 3y/8-7=y/2-8 | | -8=12x=-68 | | x/75+95=96 | | 3c-16=2 | | 35b^2+19b-24=0 | | 3x*5x=6 | | a^2+48^2=60^2 | | 2/4x=15 | | 6x-5=x-8 | | 0.6(6x-15)=-4x+2 | | x/5=(x+15)/11 | | 2x2+3x+1=20 | | -x^2-13x=1/10 | | 3x*5x=6.2 | | 8d+4=-12 | | 2x+5=x+77 |